Kinematic Equations of Motion

$$v = u + at$$
 $s = \frac{(u + v)t}{2}$ $v^2 = u^2 - 2as$ $s = ut + \frac{1}{2}at^2$ $s = vt - \frac{1}{2}at^2$

These five equations can be used to find any information about an object moving with **constant acceleration**, provided you have three pieces of information.

"u" represents initial velocityⁱ, "v" represents final velocity, "s" represents distance, "a" represents acceleration, and "t" represents time.

Say you wanted to find the final velocity of a car, over a span of 10 s, and you knew that the starting speed was $3ms^{-1}$ (3m/s or 3 metres per second), and the acceleration was $2ms^{-2}$ ($2m/s^2$ or 2 metres per second squared, meaning that every second the speed increases by $2ms^{-1}$). Using the equation v = u + at we find that $v = 3 + 2 \times 10$. The final velocity is 23 ms⁻¹.

Proof that v = u + at

For any velocity-time graph, the acceleration is equal to the gradient of the graph. This graph is a straight line, which shows gradients remains constant and therefore acceleration is constant. The gradient of a line is change in y over change in x, which in this case is $\frac{v-u}{t-0}$, or $\frac{v-u}{t}$ as acceleration is equal to gradient $a = \frac{v-u}{t}$, re-arranging this gives v = u + at.

Proof that s = 0.5(u + v)t

For any velocity-time graph, it is also true that the area under the graph is equal to the distance travelled. The general equation for the area of a trapezium is

 $\frac{1}{2}(a+b)h$. This trapezium is 'on its side' so the height = t and a = u, b = v. Therefore $s = \frac{(u+v)t}{2}$

Proof that $v^2 + u^2 = 2as$

Re-arrange equation 1

to give t to give t input into equation 2 giving v = u + at $t = \frac{v - u}{a}$ $s = \frac{(u + v)t}{2}$ $s = \frac{u + v}{2} \times \frac{v - u}{a}$ re - arranging this gives $2as = v^2 - u^2$ so

So

$$v^{2} = u^{2} + 2as$$

$$v^{2} = u^{2} + 2as$$
Using equation 1
$$v = u + at$$
Substitute into equation 2
$$s = \frac{(u + v)t}{2}$$
Giving
$$s = \frac{(u + v)t}{2}$$
So
$$s = ut + \frac{1}{2}at^{2}$$
Using equation 1
$$v = u + at$$
Re-arrange to give u
$$u = v - at$$
Substitute into
$$s = ut + \frac{1}{2}at^{2}$$
To give
$$s = (v - at)t + \frac{1}{2}at^{2}$$
So
$$s = vt - \frac{1}{2}at^{2}$$

See also

So

- Newton's Second Law

<u>References</u>

Attwood, G. et al. (2017). Edexcel AS and A level Mathematics - Statistics and Mechanics - Year 1. London: Pearson Education. pp.133-142.

ⁱ Velocity is similar to speed, except that speed is a scalar quantity and velocity is a vector. A scalar quantity measures only magnitude and does not taken direction into account (if a car is travelling at 30 miles per hour, it is travelling at that speed regardless of its direction). A vector quantity takes magnitude and direction into account (if forwards is positive, a car travelling forwards would have velocity 30mph whereas backwards would be -30mph).